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ABSTRACT

The frequency change in internal gravity waves upon scattering from a rough topography is in-
vestigated analytically. For this, sets of appropriate and tractable governing equations for various
parameter regimes are derived using the method of multiple scales under the assumption that the
amplitude of the bottom topography is small. A solution is shown for a simple case in which an
incident internal wave is approximately linear and monochromatic. The solution has the following
features. The intrinsic frequencies of the scattered waves are given as the sum and difference of the
incident-wave frequency and the Doppler shift (or lee-wave frequency). This Doppler shift causes the
change in the frequency. Hence, the assumption of frequency conservation is not valid if the Doppler
shift is significant, i.e., when the horizontal scale of the bottom roughness (or the length scale in the
plane of the slope) is of the order of or much less than that of the incident-wave flow excursion. This
condition can be satisfied in a realistic parameter range.

The occurrence of such a frequency change has the following implications. Firstly, it affects the
estimate of the boundary mixing induced by the scattering since the energy redistribution in the
vertical wavenumber space on scattering differs from that estimated using the assumption of fre-
quency conservation. This effect is caused because for a given horizontal wavenumber, the change in
the frequency alters the vertical wavenumber of the scattered waves through the dispersion relation.
Furthermore, if the incident waves are not monochromatic, even the leading-order scattered waves
cannot be obtained by the superposition of the solutions for all the Fourier components of the inci-
dent waves due to the difference in the Doppler shift. Secondly, the effects of the background flow
associated with the incident and primary reflected waves are significant when the frequency change
occurs such that the background flow can create a critical level and/or advect scattered waves. The
former causes mixing and background-flow acceleration and the latter is favorable for the amplifi-
cation of the scattered waves through superposition. Thirdly, the resulting energy redistribution in
frequency space could modify the spectrum shape of the oceanic internal waves, which is considered

to affect both interior and boundary mixing.

1. Introduction

The reflection and scattering of oceanic internal grav-
ity waves off bottom topography can redistribute internal
wave energy to higher vertical wavenumbers, leading to
enhanced mixing near the bottom boundary. Such inter-
nal wave-induced boundary mixing has been estimated to
contribute significantly to the basin-wide cross-isopycnal
mixing [e.g., Eriksen, 1985; Miller and Xu, 1992]. The
total amount and the distribution of cross-isopycnal mix-
ing strongly affect the global thermohaline circulation [e.g.,
Munk, 1966; Bryan, 1987; Munk and Wunsch, 1998; Ha-
sumi and Suginohara, 1999]; therefore, a better under-
standing of the reflection and scattering process is impor-
tant not only for its theoretical interest, but also for a bet-
ter understanding and modeling of the thermohaline circu-
lation.

Previous theories have revealed an interesting variety of
reflected waves corresponding to various shapes of the bot-
tom topography. Theories on the reflections over a plane
slope showed that the wavenumber normal to the slope
changes upon reflection based on the conservation of both
the frequency and the wavenumber parallel to the slope.
Such a change in the wavenumber results in intense mixing
near a critical slope, where the bottom slope and the ray
path of the reflected waves are parallel [e.g., Phillips, 1977;
Eriksen, 1982; 1985]. Nonlinear effects, which become im-
portant in such a situation, were investigated further [e.g.,
Thorpe, 1997]. Theories on the reflections over a nonplanar
but “smooth” topography in comparison with the wave-
length of an incident plane wave have shown the occur-
rence of split reflection [Baines, 1971a], different responses
over convex and concave topographies [e.g., Gilbert and
Garrett, 1989], and the effects of finite topographic height



and/or depth on the change in the vertical wavenumber
[Miiller and Liu, 2000a;b]. Numerical models were invoked
to investigate the effects of three dimensionality [Johnstone
and Merrifield, 2003] and nonlinearity [Legg and Adcroft,
2003] for this kind of topography.

When the bottom topography is rough as compared to
the wavelength of an incident wave (e.g., when a small sinu-
soidal variation with a wavenumber k; is superimposed on a
plane), Baines [1971b] found that the reflected waves com-
prise three components: a “primary” reflected wave and
two types of “scattered” waves. The primary reflected wave
is the same as that reflected from a plane. On the other
hand, the scattered waves have different wavenumbers in
the direction parallel to the plane. Their wavenumbers
are determined as the sum and difference of the wavenum-
bers of the incident wave and the topographic wavenum-
bers (i.e., k; & ky, where k; denotes the wavenumber of the
incident wave). Mied and Dugan [1976] relaxed the condi-
tion of the small-amplitude bottom roughness in the case
with no mean slope by expanding the scattered wave so-
lution with respect to the slope of the bottom roughness.
The horizontal wavenumber of the scattered waves is then
given as the sum and difference of the wavenumbers of an
incident wave and integer multiples of those of the topog-
raphy (i.e., k; = nky for the nth order). Thorpe [2001]
extended the theory to consider rough topographies with
a mean slope, and Legg [2004] incorporated the Coriolis
effect.

These theories were applied to the empirical spectral
representations of the bottom topography and internal waves
in order to estimate the redistribution of the incident-wave
energy flux in wavenumber space [Rubenstein, 1988; Miiller
and Xu, 1992]. In particular, Miiller and Xu [1992] refor-
mulated scattered wave solutions in a more revealing man-
ner and estimated that scattering might be equally or more
efficient than reflection in causing mixing near the bottom.

All of these previous theories have assumed that the
frequency is conserved on reflection. In fact, absolute fre-
quency (i.e., frequency in a reference frame fixed to the bot-
tom) is conserved on reflection. Nevertheless, when a back-
ground flow is present, intrinsic frequency (frequency in a
frame moving with the background flow) should be used,
otherwise the Doppler shift must be taken into account in
order to determine the wave ray slope or wavenumbers of
scattered waves. Previous theories on scattering neglected
the effect of advection and hence implicitly assumed that
intrinsic frequency is equal to absolute frequency and is
hence conserved.

However, the validity of this assumption is questionable
in a certain parameter range. For example, consider the
generation of internal waves by a barotropic tidal flow over
rough topography. The generated internal waves are ex-
pressed as the superposition of the higher harmonics [Bell,
1975a; Balmforth et al., 2002; Khatiwala, 2003], and their

intrinsic frequencies are approximately given by the sum
and difference of the tidal frequency and the Doppler shift
(or lee wave frequency) [Nakamura et al., 2000; Nakamura
and Awaji, 2001]. In a similar manner, intrinsic frequency
may be changed by scattering over rough topography.

St Laurent and Garrett [2002] utilized without deriva-
tion the Bell’s [1975b] theory to estimate the energy flux
scattered from the mode-1 internal tide at the Mid-Atlantic
Ridge by using mode-1 internal tide currents in place of a
sinusoidally oscillating barotropic current. Through the
use of the Bell’s formula, the estimate should be affected
by the effect of frequency change. Nevertheless, since their
main focus was not on scattering, not only the validation
of the use of the Bell’s formula for that case but also the
condition, mechanism, and effects of frequency change were
not investigated.

In this paper, we shall analytically demonstrate that
the frequency conservation for internal wave reflection is
violated in certain parameter regimes. The condition and
effects of the violation of the frequency conservation are
then investigated.

After a heuristic derivation of governing equations, a
scattered wave solution with advection effect is presented
in section 2 for a simple case in which both the incident
wave and the bottom topography are monochromatic and
in which the Boussinesq approximation is used with a uni-
form buoyancy frequency. The occurrence of frequency
change and its relation to higher harmonics are shown in
section 3. The condition for frequency change and its ex-
tent in various parameter ranges are investigated in section
4. A more rigorous derivation of the leading-order equa-
tions is given in section 5, which validates the governing
equations used in section 2 and further reveals that the ap-
propriate governing equations differ for various parameter
regimes (or equivalently, shows which terms are negligible
to what order). Then possible effects and implications are
discussed in section 6. Finally, the results are summarized
in section 7.

2. Scattered wave solution with advection by pri-
mary waves

a. Governing equations

Consider internal wave reflection over small-amplitude,
rough topography. Then the primary wave field consists of
the incident wave and its reflection on a plane horizontal
boundary (i.e., the primary reflected wave). For a sinu-
soidal incident wave, these waves form an exact solution
of the nonlinear governing equations with Boussinesq ap-
proximation for uniform stratification. The equations for
the scattered waves are then obtained by linearizing about
this solution. The result will be the usual linearized in-
ternal wave equations, with extra advection terms such as
Wity Vs +us- Vi, where the subscripts ¢ +r and s de-



note the sum of the incident and primary reflected waves
and scattered waves, respectively, and ¢ denote momen-
tum or density. In the usual linear theory such advection
terms are neglected and the scattered wave field satisfies
the usual homogeneous linear equations forced by the bot-
tom boundary condition.

We consider here the effect of the advection by the pri-
mary wave field, w;y, - V. This is done by assuming mo-
mentarily that it is possible to neglect the spatial derivative
of the primary wave field in the scattered wave equations
when the primary wave field is slowly varying relative to
the topography and hence to the scattered wave field.

Then the two-dimensional equations for the scattered

waves in an inviscid, rotating, and uniformly stratified Boussi-

nesq fluid become
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Here, the standard notations are used. The subscripts [ and
s denote large- and small- scale variables associated with
the primary and scattered wave fields, respectively. The
density is separated into the reference value, background
stratification, and perturbation as

Ptotal = PO + ﬁ(z) + pl(mv t)> (24)

The validity of the neglect of the nonlinear terms like
us- Vi, will be examined later in section 5. Here we note
beforehand that the above governing equations are valid
in a parameter regime where k;U;/w; (= ksUiyr/wi) ~ 1,
ws ~ wy, and kU;/w < 1 (k, w, U are the horizontal
wavenumber, intrinsic frequency, and the amplitude of hor-
izontal velocity, respectively). Because of the last condi-
tion, kU /w; < 1, the primary waves can be approximated
to be linear in the leading order, even when the advec-
tion by the primary waves is taken into consideration. In
other parameter regimes, the appropriate governing equa-
tions take somewhat different forms. This is especially so

in the regime where the incident wave is nonlinear in the
leading order.

The above governing equations can be solved using the
Fourier transform, as shown in the rest of this section, be-
cause the spatial derivative of the large-scale wave field
(i.e., the primary wave field) is assumed to be negligible.

b. General solution

The equations (2.1) with (2.3) can be reduced to a single
equation for w, as
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since the large-scale wave field does not depend on the
small-scale coordinates (zs,zs) and thus D/Dt and Vs =
(0/0xs,0/0zs) commute.

For the same reason, (2.5) can be solved using the
Fourier transform, and thus ws may be written as the sum
of Fourier components,

ws = As(x) / / W (kg, t)e™ " dk,dm,, (2.6)

where ks = (ks,ms). The equation for each component is
then given as

2
(% + ikgu; + imswl> Ws(ks,t) + Q2 (ks (ks, t) =0,
(2.7)
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To solve (2.7), we introduce a frame (X, = (X, Z5))

moving with w;, that is,

t
X, —a, - / wi(mi ('), t)dt', (2.9)
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which is an extension of the moving frame introduced by
Bell [1975]. In the moving frame X, w; is described as

t
07 (ks 1) = 10 (s, £) exp (zk: - / ul(a:l(t’),t’)dt’>
0

(2.10)
and (2.7) becomes
o*wm
=+ 0 (k,)w!" = 0. 2.11
S+ ()i =0 (2.11)

This can be solved using a Fourier transform with respect
to time,

Wy = / F(w)e “'dw, (2.12)
yielding the dispersion relation
w? = Q% (k,). (2.13)



Since w and ks are specified from the bottom boundary con-
dition described below, m is determined in order to satisfy
the dispersion relation along with the radiation condition.

c. Topography and large-scale waves

In order to determine the properties of scattered waves
from the bottom boundary condition, we next specify the
bottom topography and large-scale waves in a very sim-
ple fashion to provide basic insight into more complicated
situations.

We consider bottom topography and an incident wave
that are both monochromatic as

1 ) )
h = HCOS(k‘bZ’S) = _H(ezkb:vs + e—zkbzs),

(2.14)

u; :Uz(kz) COS(kil‘l +m;z; — wit)
1

2
(2.15)

Here, subscripts ¢« and b denote the incident wave and the
bottom topography, respectively. The incident wave sat-
isfies the linear internal-wave equations (5.34) in section
5.c.

For convenience, we define a notation 6 which works in a
manner similar to Einstein’s summation rule but represents
a summation for the cases of # = 1 and § = —1, such that

eszz :ezkz + e—zkz
0

8_ei9kw :iek,ewkw — Zkezkx + i(_k)efikx.
T

)

The wavenumbers or frequencies with the # notation are
defined as positive or zero. When there are 6 notations
with different subscripts, each notation is independently
summed such that

ez(Qkkz—wat) — ez(kz—wat) + ez(—kz—Ouwt)

— ei(kwfwt) + ei(kx+wt) + ei(kafwt) + ei(fkarwt)

= 4 cos(kzx) cos(wt).
The use of this notation allows us to write the relation
between the sign of the wavenumber and the frequency
explicitly and neatly.

Using this € notation, the above topography and inci-
dent wave are written as

1.
h :§Helebkbw5

u; :%Uz (aiki)ewi(kixl+miz17wit) .

(2.16)
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Here, U; = (U;, V;, W;) comprises amplitudes of the veloc-
ity components, which can be written in terms of U;, which

[ (UZ (ki)ei(kizl+mizl—wit) + Ui(_ki)e—i(kiitl—‘rmizl—wit)) .

is set to a constant value, from the polarization relation as

vi-Lu, w--Ly
10;w; m;

(2.18)

and w; is the incident wave frequency given from the dis-
persion relation as

wi = Q(k;). (2.19)

The primary reflected wave, whose governing equations
are the same as those of the incident wave, is determined
from the bottom boundary condition, w; = 0 at z = 0, and
from the radiation condition as

1 .
U, = 5Ui(eiki)ezoi(kiwlimizliwit), (220)

where subscript r denotes the primary reflected wave. The
horizontal velocity (along the z direction) of these large-
scale waves at z = 0 is thus given by

w = u; + uy = Uzellilkizi—wit) (= 2U; cos(k;z; — w;t)) .
(2.21)

d. Bottom boundary condition and the solution

Given the bottom topography and the large-scale wave
field, a specific solution is determined from the bottom
boundary condition.

The substitution of (2.6), (2.16), and (2.21) into the
bottom boundary condition (2.3) yields

Ag(z1,0) / / W (ks, t)e*s " dk,dm,
. 1 .
:Uie“’i(ki’””“it)§i9bkae’0bk”S. (2.22)

The bottom boundary condition is then described in the
moving frame for consistency with the general solution as

Ag(z1,0) / / W (kg t)e'* X dksdms,
:%iebkbHUieiOi(kizl—wit)eiObkas—‘,-inkb f(; ul‘zzodt” (223)
which implies
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Applying this bottom boundary condition to (2.12) and
applying the inverse Fourier transform yield

| Y
F(w) =— / e dt, (2.26)
21 J_
t
¢ = — 0wt + Opky / ul|Z:0dt' + wt. (2.27)
0



The solution in the fixed frame is thus obtained as
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where the vertical wavenumber mg, whose absolute value is
determined from the dispersion relation, is defined as posi-
tive in order to explicitly represent the radiation condition
1

In the moving frame, the solution takes a more revealing
form

1 ,
U);n :EiebkaUiewikiwl

% / F(w)ei(Gbkas7sign(w)msZ57wt)dw‘ (229)
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3. Change in intrinsic frequency
a. Frequency of scattered waves

The frequency of major components of the scattered
waves is determined from the function F'(w), which sets the
complex amplitude of the scattered waves and is specified
in (2.26). According to the stationary phase method [e.g.,
Lighthill, 1978], the major contributions to the integral
(2.26) comes from the intrinsic frequency w that satisfies

9¢

E = abk‘bul|2:0 —O;w; +w=0.

(3.1)
The above condition is satisfied twice during one cycle of
the incident wave for one value of intrinsic frequency (or
once for u;|.—o = £2U;), and the integral is estimated by
the sum of these main contributions.

Conversely, this means that the main components of
scattered waves generated at a time ¢y have the intrinsic
frequency of

w = £ (=kpur|z=0,t=t, T wi), (3.2)

11t should be noted that the wavenumber in the fixed frame is,
strictly speaking, different from that in the frame moving with the
background flow that has non-zero convergence/divergence in the x
or z direction. The extent of the difference depends on the ratio of
wavenumbers of incident and scattered waves (i.e., 0, = k;/ks and
0m = mji/ms in x and z directions, respectively, which are discussed
in section 5). The order of the associated error is the same as that
arising from the neglect of the spatial variation of an incident wave in
the derivation of the leading-order equations for the scattered waves
and is small when §; and ., < 1.

where u;|.—o is given by (2.21)2. After the generation, the
scattered waves with the above intrinsic frequency propa-
gate through the primary wave field, and w}"* is obtained
by the sum of these main components generated during the
time duration under consideration.

Equation (3.2) indicates that the intrinsic frequency of
the scattered waves is given as the sum or the difference
of the incident-wave frequency and the Doppler-shift fre-
quency (i.e., lee-wave frequency),

(intrinsic freq.)

= (Doppler shift) £ (incident wave freq.).

The mechanism of frequency change is essentially the same
as that in the case of internal wave generation by a tidal
flow [Nakamura et al., 2000]. In fact, the bottom boundary
condition is almost identical to the case considered in Bell
[1975a] and Nakamura et al. [2000].

b. Relation to the higher harmonics

It should be noted that the above expression yields the
same wave field described using the higher harmonics like
Bell’s [1975] solution within the approximation of the sta-
tionary phase method.

To bring out this point, let us focus on the advection
effect in the kinematic bottom boundary condition, assum-
ing that the total time derivative is approximated as

D 0

— R i+r t)— t =Y :
Di N g Ty, atz=0 (3:3)
and the kinematic boundary condition is
Ws = Witr(t) at z =0. (3.4)

Ox
These correspond to (2.2) and (2.3), respectively, but x
is here written as z and the spatial variation of w;4, is
ignored for simplicity. Despite of this simplification the re-
sults are essentially the same, because k; affects only the
slowly-varying amplitude of scattered waves in this param-
eter range as shown in (2.29), and because of the boundary
condition w; = 0 at z = 0.

The essence of the frequency change may be summa-
rized as follows. Consider a monochromatic, plane incident
wave which yields

Uity (2 = 0) = Ujgpr cos wit. (3.5)

2(3.2) is obtained because the exponential function in the integral
in (2.29) becomes, after the substitution of (3.1) into (2.29),

eil0pkp X s —sign(w)ms Zs —(=Opkpug| - =0 +6;w;)t]
— eilkp Xs—sign(w)ms Zs—(=kpulz=0+wi)t]
— eilkp Xs—sign(w)ms Zs—(—kpuilz=0—w;i)t]
— eil=kpXs —sign(w)ms Zs—(kpui|z=0+wi)t]

— ei[*kas7sign(w)m5Z57(kbul |z=0—w;)t]



Introduce the Fourier transform

0= [ 0 as

— 00

(3.6)

and the transformation to a reference frame moving with
the background flow

0" = (exp (k / (s = o,T)dT) .

Then the bottom boundary condition becomes

(3.7)

wi(z =

(3.8)
The Fourier transform of w™(z = 0) with respect to time
yields,

W (z = 0) = /oo Flz=0,w)e"“'do  (3.9)

with inverse
F(z=0,w)
1 oo
2

™ (z = 0)e™'dt

€>

= lkh UZ+T/ eXpl (iwzt + k/ U/7.+’r‘ = 0 T)dT + wt) dt

2r 4
(3.10)

According to the stationary phase method, the main con-
tributions to the integral on the right-hand side comes from
the intrinsic frequency w that satisfies

0= aat (iwlt-i—k/ Uigr(z2 =0 T)dT+wt>

= dw; + kuiy (2 = 0,1) + w, (3.11)

and thus the main component of internal waves generated
at a time to has the intrinsic frequency of

w=—kuir.(z =0,t =1tp) £ w;, (3.12)

as shown in the previous section.

On the other hand, Bell’s solution method directly ex-
presses the integral on the right hand side of (3.9) using a
series expansion as

wm(z=0) = / F(z=0,w)e “'dw

— 00

t
= ikuip, (2 = 0, t)hexp (zk/ Uirr(z = 0,T)d7’>
0

(3.13)
6 t
= h—= exp <zk/ Uity (2 = 0,7')d7'> (3.14)
ot 0
_ 7 0 - inw;t kUi+7‘
— s nz}_mj einwit ] (—wi ) , (3.15)

t
0) = ikuiyr(z = 0,t)hexp (zk/ Uirr(z = 0,T)d7’> .
0

so that the total wave field is given by the sum of higher
harmonics.

The main difference between the Bell’s and the station-
ary phase method is the way of estimating the integral in
(3.9). A minor difference is the transformation from (3.13)

o0 (3.14), which is absent in the stationary phase method
and can be omitted in Bell’s solution method.

Thus, within the approximation of the stationary phase
method, internal wave components generated at time ¢
have intrinsic frequencies of —ku;+,.(z = 0, ¢)£w;, while the
total scattered-wave field, that is composed of the superpo-
sition of such wave components and is subjected to the ad-
vection by the background flow, is described with the sum
of the higher harmonics. The relation between the above
results of the stationary phase method and Bell’s solution
may be analogous, though it is not quite precise, to the re-
lation between a narrow internal-wave beam described by
integration along wave rays and that expressed as the sum
of multiple vertical modes. (Although the approximation
used in the stationary phase method could have a signifi-
cant error in the vicinity of kU;4, = w;, the results of our
numerical experiments (in preparation) suggested that the
prediction of the stationary phase method is robust in a
qualitative sense even in the case kU;;, = w;.)

Note also that the higher harmonics in Bell’s solution
contains not only the effect of the change in intrinsic fre-
quency but also the effect of the oscillation of the advecting
flow. To reveal this fact, consider the situation in which an
internal wave of the tidal frequency wyp is being advected
by a barotropic tidal flow U(t) = Up cos(wot). The vertical
flow associated with the internal wave at a certain point in
the moving frame may be written as

m

k
w™ = ——U; cos(wot 3.16

U cos(int) (3.16)
where U; is the complex amplitude of the horizontal flow
of the internal wave with k& and m the horizontal and ver-
tical wavenumbers, respectively. The vertical flow can be
rewritten as

1 U

w™ = —7“{?(]{) cos(wot)

(3.17)
m Uy

and thus is described in the frame fixed to the bottom as

—
w = wmefzk Js U(r)dr

i U a —zkfoi U(r)dr

m U[) 8t
“mUs Z inwoe ™ J,, <kUO> , (3.19)

m U[)

n=—oo

(3.18)

This shows that an internal wave that is advected by a
sinusoidal tidal flow and has intrinsic frequency of the tidal
frequency is expressed as the sum of the higher harmonics



in the fixed frame. Similarly, an internal wave with the
tidal frequency in the fixed frame becomes the sum of the
higher harmonics in the frame moving with the sinusoidal
tidal flow.

In this sense, the physics of frequency change is masked
in the expansion into series of higher harmonics, and there-
fore the following discussion is based on the results of the
stationary phase method.

4. Condition and regimes

a. Condition for frequency change

Since the change in intrinsic frequency arises from the
Doppler shift as indicated by (3.2), the extent of the fre-
quency change can be estimated from

2kpU;

Wi

, (4.1)

where 2U; is the amplitude of the horizontal flow that is
parallel to the topographic wavenumber vector and is as-
sociated with the incident and primary reflected waves at
the bottom. The frequency change is significant when this
ratio is of the order of, or much greater than, unity.

It is noteworthy that this condition for frequency change
can be satisfied in a realistic parameter range. For ex-
ample, consider an incident wave of a semi-diurnal tidal
frequency with a flow amplitude of 5 cm s~ !; the topo-
graphic wavelength 27 /k; required is approximately 4 km
when 2kyU; /w; = 1 (and hence ws ~ w;) or approximately
400 m when 2k,U; /w; = 10 (and hence ws > w;). These
estimates suggest that the occurrence of scattering with
frequency change could be a common phenomenon in the
ocean, since the bottom roughness of such scales is widely
distributed in the oceans.

More precisely, the horizontal wavenumber of scattered
waves is the sum and difference of the horizontal wavenum-
bers of the incident wave and the topography (i.e., k! =
k! +ky; Baines [1971b]), although the horizontal wavenum-
ber of the scattered waves is approximated as that of the
topography in the above (i.e., ks &~ (6pky =) £ k) through
the assumption that the incident wave is slowly varying
relative to the scattered waves (i.e., |k!|/|ky| ~ 0). Then
the more precise measure of the frequency change may be
given by .

|ks 'ui+7‘|, (42)
w;

where the superscript A the horizontal component.

b. Parameter regimes of frequency change

The ratio (4.2) implies the presence of the following
three regimes.

(i) |k? - ul,, |/w; > 1: The scattered wave frequency is
much greater than the incident wave frequency.

(i) |kl - ul, ,|/w; ~ 1: The scattered wave frequency is of
the order of, or much smaller than, the incident wave
frequency.

(iii) |k2 - ul, . |/w; < 1: The scattered wave frequency is
almost equal to the incident wave frequency.

The first, second, and third regimes correspond to the
regimes in which quasi-steady lee waves, MTL waves, and
internal tides are generated by a barotropic tidal flow, re-
spectively [Nakamura et al., 2000]. Frequency conservation
is not valid in the first two regimes, while it provides a good
approximation in the last regime, which has been consid-
ered in the previous studies.

The parameter regimes can be also viewed in terms of
horizontal scale. Frequency change occurs when the topog-
raphy is sufficiently rough because the ratio (4.2) can be
approximated as that of the flow excursion at the bottom
(lul,,|/w;) to the topographic length scale (|ks|™"). This
roughness of the topography is reflected by the difference
in scale between the horizontal wavenumbers of incident
and scattered waves. Denoting these wavenumbers as K;
and K, (= |k! +ky|), respectively, we can scale ratio (4.2)
as

(ki + Fo) - uiy, | KUipr _ (K) (KU+>

w; w; K; Wi
(4.3)
where Uy, = |ul_|. Here, the ratio in the last bracket,
KiUigr
A = Kilier (4.4)
Wi

is the wave Froude number (or temporal Rossby number)
of the incident and primary reflected waves.

Using A and K;/ K, the extent of frequency change on
scattering can be estimated as follows and shown in Fig.
1.

(i) KsUjyr/w; ~1 when K;/K; < 1 and A < 1:
Significant frequency change occurs (the MTL wave
regime) when the horizontal wavenumber of the to-
pography is much higher than that of the incident
wave, even if the incident and primary reflected waves
are approximately linear.

(11) KsUjyr/w; > 1 when K;/K; € §' < 1and A < 1
(where ¢’ is a small parameter):
The scattered wave frequency is much higher than
the incident wave frequency (the lee wave regime),
when the horizontal wavenumber of the topography
is higher than that of the incident wave by more
than two orders, if the incident and primary reflected
waves are approximately linear.

(iti) KsUijr/w; ~ 1 when K;/Ks ~1and A ~ 1:
When the incident and primary reflected waves are



highly nonlinear, frequency change is significant (the
MTL wave regime), even if the topographic wavenum-
ber is of the order of the incident wave wavenumber.

(iv) KUiyyJw; > 1 when K;/K; < 1 and A ~ 1:
When the incident and primary reflected waves are

highly nonlinear, a much lower topographic-wavenumber

is sufficient to make the scattered wave frequency
much higher than the incident wave frequency (the
lee wave regime).

(v) KUy, Jw; < 1 when K;/Ks ~1and A < 1:
Frequency change hardly occurs (the internal tide
regime) when the horizontal wavenumber of the to-
pography is of the order of that of the incident wave,
if the incident and primary reflected waves are ap-
proximately linear. In this regime, the linear scatter-
ing considered in the previous studies occurs.

(vi) KUy /w; < 1 when K; /K> 1:
Reflection rather than scattering occurs.

Hence, the scattered waves have much higher horizontal
wavenumbers than the incident wave when the frequency
change occurs, except for the case (4ii). In these cases (i.e.,
(1), (i7), and (iv)), the corresponding topographic wavenum-
ber, Ky, is almost equal to the horizontal wavenumber of
the scattered waves, K, because the topography is very
rough compared to the wavelength of the incident wave.
Note that the wave Froude number A should not be greater
than unity because this would be unphysical — the inci-
dent wave would break. This parameter range is excluded
from the above list.

5. Derivation of leading order equations for scat-
tered waves in various regimes

The discussion is hitherto based on the governing equa-
tions (2.1) and the boundary condition (2.3), assuming that
the spatial derivative of the primary wave field is negligi-
ble. However, as shown in the previous section, there are
several parameter regimes in which frequency change oc-
curs, and the difference between spatial or temporal scales
of the primary and scattered waves varies among these
regimes. Also, the consideration of the effect of the ad-
vection by the primary waves implicitly assumes that the
incident wave has finite amplitude. It is therefore required
to know which terms can be neglected in what regime and
the resulting error. In order to discuss these issues we
present a more rigorous derivation, which leads to different
governing equations for different regimes as will be shown
in section 5.c.

a. Scaling 1: Separation of the scattered wave field

To derive the appropriate governing equations, we first
isolate the scattered wave field from the total wave field in

this subsection in order to derive equations for scattered
waves through a scaling argument in subsequent subsec-
tions.

1) (GOVERNING EQUATIONS OF THE TOTAL FIELD

As in the previous sections, we consider the reflection of
a monochromatic internal wave over small-amplitude bot-
tom topography. Although the discussion here is limited
to the topography with no mean slope, it can be easily
extended to the case with a mean slope.

The equations for an inviscid, rotating, and uniformly
stratified Boussinesq fluid are

ou Vp pg
—+ (- V)u+ fzxu=———-"—z,
ot ( Jutf Po Po
V . u =0,
ap’ b, 0p
¥ +u-Vp +w$ =0, (5.1)

where standard notations are used and z is a unit vector in
the vertical direction. The density is separated into refer-
ence value, background stratification, and perturbation as
in (2.4), and the hydrostatic balance for a resting fluid is
subtracted from the momentum equation. The kinematic
boundary condition at the bottom is

w=u"-V"h=0 at z=h(x"). (5.2)

The governing equations retain the advection terms to
consider the effects of the background flow on scattered
waves and thus they cannot be solved in their original form.
In order to transform these equations into a tractable yet
relevant form, we define the scattered wave field in a man-
ner in which it is convenient to apply the multiple scale
method.

2) DEFINITION OF SCATTERED WAVE FIELD

As noted in section 2, the total reflected wave field com-
prises the primary reflected waves in the order of € and
scattered waves in higher orders [e.g., Miiller and Xu, 1992],
where € is a nondimensional scale of topographic height
and its precise definition in this study is given in (5.24)
or Appendix B. Also, the sum of the incident and primary
reflected waves is identical to the solution for reflection on
a plane.

Based on these facts, we define the scattered wave field
as the difference between the solution for reflection on a
rough topography and that on a plane, i.e.,

(scattered) et (total) — (reflection on a plane). (5.3)

This roughly corresponds to an expansion of the wave field
with respect to e. This definition isolates the scattered
wave field and thus it is helpful for the scaling of the gov-
erning equations in section 5.b. In this definition, results



of nonlinearity of incident and primary reflected waves are
excluded, while nonlinear interactions involving scattered
waves are all included in the scattered wave field. This
enables a clear separation of scattered waves from incident
and primary reflected waves of higher orders (or higher
harmonics) and thus simplifies the treatment of incident
waves. Nevertheless, it should be noted that the definition
(5.3) can be unimportant for the case A < 1 in which
nonlinear terms are neglected in the leading order and the
spatial scale of incident and scattered waves differs greatly
as shown in Fig. 1.

3) MULTIPLE SCALE METHOD

The discussion in section 4 indicates that when the fre-
quency change occurs, the horizontal wavenumber of the
scattered waves is generally much higher than that of the
incident and primary reflected waves, since A should not be
greater than unity. We thus utilize the method of multiple
scales by separating the wave field into large- and small-
scale fields. The large-scale field is scaled by the incident-
wave frequency and wavenumbers (which are the same as
those of the primary reflected waves), while the small-scale
filed is scaled by those of the scattered waves, as given by

g—w—-ﬂu—
ot ot ol
0 0 0
oz —ksa—is + kla—@, (5.4)
9 _ 99
8z 0z, oz’

where the large and small scales are denoted by the sub-
scripts [ and s, respectively, and where ~ denotes nondi-
mensional variables.

Then, dependent variables are separated into those for
the large and small scales and are scaled as

(’LL, v, U)) = (Ulﬂl; W'El; Wlml) + (Usﬂs; Vsﬁs; Ws'UN}s)
p= Plﬁl + Psﬁs;

p'=Rip'; + Ry . (5.5)
Note that the large-scale variables are functions of only
x1, 21, and t;, such as

w; =U1y (CEl, 21, tl),

Us :Us’lj,s(il?s,Zs,ts;CEl,Zl,tl)- (56)

This is because nonlinear interactions do not occur between
a monochromatic incident wave and the primary reflected
wave over a horizontal plane. In the case of sloping topog-
raphy or non-monochromatic incident waves such as tidal
beams, nonlinear interactions can generate higher harmon-
ics [e.g., Thorpe, 1997; Lamb, 2004]. Nevertheless, these
higher harmonics can be neglected when A « 1 as long as

a resonant interaction does not occur; without resonance,
the higher harmonics are of higher orders of magnitude
with respect to A. If needed, the inclusion of such effects
is possible owing to the definition (5.3).
For simplicity, we consider the bottom topography with
a single small length-scale of 1/kg, namely,
h = Hh(z,). (5.7)
This is because the frequency change is insignificant when
the topography varies only on a large scale (i.e., h = h(z;)),
except for the case (i77) in section 4.b. Further, the scat-
tering off topography with various length scales can be
obtained to the leading order by the superposition of the
waves scattered off each topographic Fourier component
for small-amplitude topography.

4) RATIOS OF THE SCALES

The multiple scale method yields three ratios of scales,

wi k‘l my
614.) = = —

= s =M
W ks’ ms

(5.8)

Each ratio must be much smaller or much larger than unity
for the multiple scale method to be applicable to the corre-
sponding direction (or time). We thus examine the scales
of these ratios.

To scale the ratios, we utilize the dispersion relation
and the condition for frequency change. The dispersion
relation of linear internal waves can be approximated as
w~ Nk/mif f €« w < N, where N is the buoyancy
frequency. The above three ratios are therefore related to

each other by
Ok

5~

6m
when the condition f <« w < N is satisfied for both wg
and w;. (The cases w ~ f and w ~ N are discussed in
Appendix A.)
In section 4, we found that the condition for frequency
change requires

(5.9)

ksUp
Wi

>1lor ~1 (5.10)

The nondimensional parameter k;U; /w; corresponds to the
ratio (4.2) and thus the former regime (k;U;/w; > 1) corre-
sponds to the lee-wave regimes (7i) and (iv) in section 4.b,
while the latter (ks;U;/w; ~ 1) corresponds to the MTL-
wave regimes (4) and (iii).

This parameter can be rearranged as

kUi _ (ks (kU A
wi o k‘z wi 5k,
where A (= kU;/w;), which is redefined here and corre-

sponds to (4.4), is now the wave Froude number (or tem-
poral Rossby number) of the large-scale waves and is thus

(5.11)



the measure of their nonlinearity. (Note that A takes,
in general, various values from infinitely small values for
infinitesimal waves to around unity for highly nonlinear
waves, and it cannot be specified unless the incoming wave
is specified.)

When kU /w; > 1, it follows that ws > w;. This
is because in this parameter regime, the scattered wave
frequency is almost equal to the lee-wave frequency, which
can be scaled as wy ~ k;U;, and thus

kU
Wy '
Note that the last term is much smaller than unity in this
regime. The combination of (5.9), (5.11), and (5.12) yields

wi
60.1 = — ~
Ws

(5.12)

0o~ 0, Ok~ 0N, Gm~A. (5.13)

Here, we define a small parameter 6 as § = §,,. The param-
eter § will be used later to represent the “small parameters”
arising from the multiple scale method (i.e., d,, 0k, and d,,)
by a single parameter.

When k U;/w; ~ 1, two cases are possible: ws ~ w; and
ws < wi. In the former case (ws ~ wy), ws is still of the
order of k,U; and thus (5.12) holds in a similar manner.
Therefore the use of (5.9), (5.11), and (5.12) yields,

o~ 1, O~ O~ o~ A, (5.14)

where we define 6 = ¢y, since (= wi/ws) ~ 1.

The latter case (ws < wi) arises when the Doppler shift
is almost equal to the incident-wave frequency and thus
their difference, which is equal to the scattered-wave fre-
quency under consideration, becomes much smaller than
the incident-wave frequency. In this case, (5.12) does not
hold, since

ws L wp ~ kU (5.15)

Using (5.15) instead of (5.12) and defining § = 6%, we
obtain the following from (5.9) and (5.11):
S~ 07t G ~A,

G ~ OA. (5.16)

The above scales of the three ratios are summarized in
Table 1. It is apparent that the multiple scale method is
applicable in most cases. In the linear case A < 1, it is
applicable to all the directions and time, except for the
case ws ~ wy, in which it is inapplicable to time. Even
in the nonlinear case A ~ 1, the multiple scale method is
applicable to the ¢ and z directions in the lee-wave regime
(ws > wy) and to the ¢ and z directions in the case ws, < wy.

It would be useful if these scales of §,, dr, and d,, are
written in terms of § alone so that the governing equations
for the higher-order scattered waves can be systematically
obtained if desired. In order to do so, A should be written
in terms of 0, when A <« 1 (it is unnecessary when A ~ 1
since the order of magnitude of A is already given).
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In the regime ws; ~ wy, (5.14) indicates that 6 ~ A.
In the other two regimes, there is no general relation be-
tween 6 and A, because A depends on the properties of
an incident wave, while ¢ is determined by both the topo-
graphic wavenumber and the flow excursion of the incident
wave (2U;/w; where 2U; = U;4,). Nevertheless, once the
incident wave and topography are given, the magnitudes
of both A and § become known values. Then, this specific
value of A may be written using the specific value of § as,
for example,

A ~ 5" (5.17)

Here, n is a natural number (if § > A) or the inverse of
a natural number (if 6 < A). The value of n should be
determined according to the situation under consideration.
The results of the substitution are shown in Table 1. On
the other hand, the results become significantly simpler
when A ~ 1, as also shown in Table 1.

b. Scaling 2: Nondimensional equations

By separating the scattered wave field from the total
and using the scales described in section 5.a.3, we nondi-
mensionalize the equations of the large- and small-scale
fields. The multiple scale method is formally applied to ¢, z,
and z in order to derive nondimensional equations that are
useful for various parameter regimes. The applicability of
the multiple-scale method will be taken into consideration
after the nondimensional equations are obtained.

1) LARGE SCALE

From definition (5.3), the large-scale wave field satis-
fies the original governing equations even without scattered
waves. Also, the large-scale wave field varies only on the
large scale, as noted in (5.6).

The continuity equation thus becomes

o, o,
(klUl)a_fl + (leVl)a—ZNI =0 (5.18)

and hence
k‘lUl ~ mlWl. (519)

The nondimensional momentum equations are obtained
similarly. We divide the equations by the scale of each
local temporal change term (instead of the Coriolis term
used in the derivation of quasi-geostrophic equations, since
the motion being considered comprises propagating inter-



nal waves). Using (5.19), it follows

oy _ou; Oy 2\ . op
ot +A <ul 07 + wy 851) (w? 1 o7,
617l ~ 61)[ - 817, -
a_t~l +A <Ula—:ﬁl +wla—gl> + uy —0,
KN [00 (00 00\ _ OB
m? ) | oty Yoo, T oz )| T oz M
(5.20)

In the derivation, we performed the scalings P, ~ pow,U; / ki,
Ry ~ myP /g, and Vi ~ (f/w)U;. The first one implies
that the horizontal pressure gradient term is of the order
of the local temporal change term, since both terms are
fundamental to internal wave dynamics. The second one
implies that the gravity acceleration term is of the order
of the vertical pressure gradient term (i.e., the hydrostatic
balance is significant). The last one is for convenience. It
is valid when w; ~ f. In the other case, the Coriolis term
is automatically neglected using this form (since the case
wi < f is not considered).
Similarly, the density equation becomes

R 8/;’ ~ 8p~/ k2 N2
+A<u—l l) :_<_12_2
my wp

1 9% + wza—gl
where N = (—(g/po)(dp/dz))'/?. Note that the coefficient
of the right hand side is O(1), as obtained from the hydro-
static dispersion relation (w ~ Nk/m).
The bottom boundary condition for the large-scale waves
is given as w; = 0 at Z = 0, since these waves comprise the
incident and reflected waves on a horizontal plane.

op,

= 0 21
6tl ) wi, (5 )

2) SMALL SCALE

Nondimensional equations of the small-scale waves are
obtained from the use of the multiple scale method (5.4) to
(5.6) and the subtraction of the corresponding large-scale
equation.

Continuity equation

A nondimensional continuity equation for the small scale
O 0w

is obtained as
v () (52 + e

s Ous
O oy

when scaled by kU, after the subtraction of the large-scale

continuity equation (5.18). Since both ¢ and 4, are much

less than unity as long as A <« 1 (Table 1), the third term

in (5.22) must be O(1), and hence

ksUy ~ m W, (5.23)

When A ~ 1, 6 or d,, (or both) is O(1) and thus
the multiple scale method is not applicable along the cor-
responding direction. Even in such a case, (5.23) is valid as

msW
kU,
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the scaling for leading-order scattered waves whose wavenum-
ber is scaled as ks ~ k; or mg ~ m; (or both).

Bottom boundary condition

The assumption of small-amplitude topography com-
prises two conditions: (i) the height of the topography is
smaller than the vertical scale of the waves under consid-
eration and (ii) the slope of the topography is smaller than
the wave slope. These conditions are satisfied, as argued
in Appendix B, when

e=Hmy; < 1 (and € < § when §, < 1), (5.24)

where € is the nondimensional topographic height scale
used in this study. Under this condition, the bottom bound-
ary condition (5.2) can be expanded around z = 0 as

1h2 ou”

— h. h— h-
w—V".(hu") -V (2 o

)—---:0 at 2z =0,

(5.25)
following Miiller and Xu [1992].
Noting that h = h(zs) and w; = 0 at z = 0, a nondi-
mensional bottom boundary condition, which is scaled by
Wy, becomes

ws(z=0)=
kU H - U\ - ah+ Us Eau;
W, “r\T )" ) ez, T\, ) "oz,
- (04, U,\ O,
(5.26)

The condition that the scale of the leading order terms on
both sides be the same gives

~1
1~ B, (Z> (5.27)
s Ul
using (5.23). It hence follows that
Us
~—. 5.28
e~ T (528)

This relation should be emphasized. The bottom bound-
ary condition relates the topographic height scale to the
ratio of the amplitudes of the incident and scattered waves
(or the large and small scales). The relation is common to
the case of linear steady lee waves [c.f., Baines, 1995] and
suggests that Us/U; < 1 for small-amplitude topography
which satisfies (5.24).

The nondimensional boundary condition can be rear-



ranged using (5.27) as

oh - 01,
ws(z=0) = ula — + 0y, <h6—2~5>
oh O, - - Ot
* 6{“5 oz, " aa, O (%@)
Oh Oup 1. (-, 0%,
+ Om hc’)xs 0% _6k <h 63:}62}) ] }
+ (0(e%)), (5.29)

where the terms of the next order in € are also written.

It is interesting that the order of each term depends not
only on € but also on ¢ and d,,. This suggests that the rel-
ative magnitude of these three nondimensional parameters
must be specified in order to obtain scattered waves of var-
ious orders. For example, when d;, ~ € (< 0,,), the effect of
the spatial variation of an incident wave (hdu; /) is ex-
cluded from the leading order and is included in the second-
order scattered waves, which also include the scattering of
the leading-order scattered waves (1i,0h/d%, + Oy /OF h).
This point has not been considered in the previous studies.

Momentum and density equations

The nondimensional momentum equations for the small
scale, which are scaled by the corresponding local tempo-
ral change terms, are rearranged using (5.19), (5.23), and
(5.28) to give

Di, (kU _ o _ Oy 2\ -
ﬁ + ( s ) |:6kus6_fl +5mwsa—z~lj| — (w—g Vs
__(9ps Ops
~s kafl 9
DUS 619 - 81}, (5m - 8} -
( >|: 8_1—'_5 56_271] 5—0,
Dws 52 _ oy o,
- () [ g o
g aps aﬁS !
( 2) K +o ag)* } (5.30)
where
D_0 .0
Dt of, “of
kU, B ~ 0 0
*(ws ) (s + i) <8~ ”’“ékm)
(O (o () ) (2 O
O LT\ ) ) \Bz T 0meg ) |

(5.31)

Similar to the derivation of the large-scale equations, we
used the scalings Ps ~ powsUs/ks, Rs ~ msPs/g, and
Vi ~ (f fwa)Us
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Similarly, the density equation is nondimensionalized

as
Dol (kU dp) 0,02, apl
Dt+<ws>(66) 6l+ Ok 82’[
k2 N2\
- (m2 - ) s (5.32)

c. Scaling 3: Leading-order equations

Using the above nondimensional equations and param-
eters, which are derived without any assumptions about A
or ¢ except that A < 1, this section shows the leading-order
equations in A for the large scale, presents the method to
obtain equations of various orders in § for the small scale,
and shows the leading order equations for various regimes.

1) LARGE SCALE

In order to allow a linear approximation for the large-
scale waves, we consider the case A <« 1 and expand the
large-scale variables with respect to A, as given by

u = ul(o) + Aul(l) + (5.33)

The substitution of (5.33) into (5.20) and (5.21) and the
rearrangement with respect to A yields large-scale equa-
tions of various orders. The leading-order equations (i.e.,
the zeroth order in A) are

o, B f_2 50 — 3;51(0)
8t~l (UZQ 6fl ’
a5, ©)
— + ;v =0,
oty u
k_f o) _ ap 50
le 8t~l 65[ pl ’
~,(0)
o _ (ﬁi__>wgm
oty mi wi ’
3111(0) 31171(0)
= 5.34
o7 0% ( )

These are the governing equations of the primary waves
used in section 2. Higher-order equations, which are re-
quired to consider the higher-order scattered waves, can
be obtained similarly, although these are omitted for con-
ciseness.

Note that if we consider monochromatic incident waves,
sinusoidal solutions are possible even if A ~ 1 for the
Boussinesq fluid of a constant buoyancy frequency. Even
in this case, the equations for the small-scale field can be
obtained by the method described in the next section. In
other words, taken into consideration the effects of advec-
tion by the primary waves is possible even for approxi-
mately linear primary waves in certain parameter ranges.



This enables us to extend the results obtained in this study
to a case with a mean slope, a case for polychromatic inci-
dent waves, and so on.

2) SMALL SCALES

Small-scale equations and the bottom boundary condi-
tion in the various regimes and of various orders in § can
be systematically obtained using the following procedure:
(i) represent the parameters d,, dx, and d,, in terms of §
for each regime, as indicated in Table 1, (ii) if d,,, g, or
Om is O(1), quit applying the multiple scale method along
the corresponding direction (e.g., if d,, ~ 1, then substitute
8. = 1 and set 9/0t,+6,0/0%, back to w,0/01), (iii) relate
€ and ¢ in a manner similar to relating 6 and A by assum-
ing that €™ ~ 4, (iv) expand the variables with respect to ¢
in a manner similar to (5.33), (v) substitute the above pa-
rameters and variables into the nondimensional equations
and boundary condition (5.22) and (5.29)-(5.32), and re-
arrange them with respect to 4, noting that k;U;/ws ~ 1
when ¢, < 1 while k;U;/ws ~ 0, when &, > 1. Then we
obtain equations of various orders for various regimes.

The leading order equations in both ¢ and € for the var-
ious regimes are shown in Table 2. The equations and/or
the bottom boundary condition are different for different
parameter regimes. The difference in the governing equa-
tions implies that the dispersion relation of scattered waves
differs and hence affects the determination of the vertical
wavenumber of scattered waves, the propagation after the
scattering, and so on.

The governing equations and the bottom boundary con-
dition used in section 2 correspond to those in the regime
where ws ~ w; and A <« 1 (and hence k;U;/w; ~ 1 and
ki/ks < 1). Note that the equations of this regime in-
clude the leading-order equations of the other two regimes
(ksUi/w; > 1 and < 1) in the corresponding limits when
0" ~ A <« 1 where n > 1 for k;U;/w; > 1. Accordingly,
the examination of the intermediate regime k;U;/w; ~ 1
will reveal the basic concept of scattered waves in these
three regimes. In contrast, the neglect of the advection of
the primary wave field assumed in section 2 is no longer
appropriate for highly nonlinear waves for which A ~ 1.
Other features of the governing equations and the bottom
boundary condition are described in the following.

When w; ~w; and A <€ 1 (and hence kU;/w; ~ 1
and k;/ks < 1) : The equations in this intermediate
regime w; ~ w; for an approximately linear incident wave
(A < 1) to the zeroth order in both ¢ and € are those shown
in section 2. The equations are quasi-linear and thus have
nearly sinusoidal solutions.

When w; > w; and A € 1 (i.e., k;U;/w; > 1 and
ki/ks < 1) : The leading-order equations in this regime
are almost the same as those when w; ~ w; and A <« 1,
if we consider the case that 6 ~ A. (The order of € is not
very important as long as €™ ~ § < 1). The differences
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are two fold. First, v,(*) = 0 because f2/w? is smaller than
d, (= 0). Second, the vertical advection term disappears
in the leading order, that is,
D_9 00
Dt 0Ot 0% s
When w; € w; and A <€ 1 (and hence kU /w; ~ 1
and k;/ks < 1) :  The small scale equations in this
regime are complicated. Because ws < wj, the incident
and primary reflected waves have a small time scale while
the scattered wave field has a large time scale. Further,
the leading order equations become

(5.35)

94"

= (0)
i 0%,

=0

(5.36)

when f ~ w,, where ¢§°) is the scattered wave variable of
the zeroth order, and the equations for the next order scat-
tered waves involve the higher order terms. The derivation
of appropriate equations needs a careful treatment and is
omitted here.

When w; - w; and A € 1 (ie., kUj/u <€ 1
and k;/ks ~ 1) : This is the regime which previous
studies have considered. Indeed, we regain the usual lin-
ear scattered-wave equations from the nondimensionalized
equations (5.22) and (5.29)-(5.32), noting that kU /ws ~
AS6 T ~ A,

When A ~ 1: Even for a highly nonlinear incident
wave (A ~ 1), the governing equations are tractable in the
regime w, > w;. The equations of the leading order (§°)
are the same as those for A <« 1 and ws > wy, except for
two differences. One difference is that the multiple-scale
method is not applicable to the z direction. The other is
that both the momentum equation for the z direction and
the density equation now include the advection of the large-
scale variables by the scattered wave (i.e., ws<°>adl<°>/az

and 1175(0)85; © /0Z, respectively) at the leading order.

As for other two regimes, the leading order equations
become nonlinear in the regimes kU /w; ~ 1 (and ws ~ wy)
or scattering hardly occurs in the regime k;U; /w; < 1 (i.e.,
ws = wy).

6. Effects and implications

Some possible effects and implications of frequency change
on scattering are discussed in this section. The discussion
is however limited to showing that these are likely to occur
and leaves quantitative investigations for future works.

a. Effects on the change in vertical wavenumber

The change in the vertical wavenumber upon scattering
is considered to be important for causing boundary mixing.
Thus, the effects of frequency change on the change in the
vertical wavenumber upon scattering are discussed first.



Consider the ratio of the vertical wavenumber of scat-
tered waves (mgs) to that estimated assuming frequency
conservation (msp). It is given by

1/2
)

N2 — o2 1/2 w2 — f2
— s 2
-(w3) (G
since the vertical wavenumber is determined from the dis-
persion relation (2.8) and the horizontal wavenumbers are
the same. In order to consider the basic change according

to the parameter regimes, let us approximate the dispersion
relation as w ~ Nk/m. Then, the above ratio becomes

ms

(6.1)

mso

—1

; (6.2)

ms Wi

Ws

~

mso

where u; = u; + u, given in (2.21). This states that the
change in the vertical wavenumber depends on the nondi-
mensional parameter k;U; 4, /w;, which is a measure of fre-
quency change (4.1) since U, y,, = U; = 2U; in the setting
of section 2. This dependence is summarized in Table 3.
When kU;tr/wi > 1 (i.e., the lee-wave regime), the
vertical wavenumber of the scattered waves is much lower
than that estimated assuming frequency conservation. This

is less favorable for causing boundary mixing. When kU, .. /w;

1 (i.e., the MTL-wave regime) and ws ~ w;, the values of
m, and mgo are different but are of the same order. The
vertical wavenumber of the sum waves (|ksu;/w;| + 1) be-
comes lower (i.e., ms < myo), while that of the difference
waves (|ksu;/w;| — 1) becomes higher. The former is less
favorable for boundary mixing, but the latter is more favor-
able. In particular, when ws; < wj;, the vertical wavenum-
ber becomes much higher (i.e., mg > mgo), which is favor-
able for boundary mixing.

In this manner, the occurrence of frequency change af-
fects the energy redistribution in the vertical wavenumber
space. Accordingly, the estimates of boundary mixing due
to internal wave scattering based on the energy redistri-
bution in the vertical wavenumber can be affected by the
frequency change.

b. Horizontal phase velocity

The horizontal phase velocity of the scattered waves
relative to the moving fluid becomes from (3.2)

w Wi
Crp = % = —Ul|z:0,t:t0 + k'_b
-1
(7] P — 2kpU;
=2U; |— . 6.3
2Ui ( Wi ( )

The ratio 2k,U; /w;, which corresponds to (4.1), character-
izes the scattered-wave propagation. Because the magni-
tude of the nondimensional advecting flow, |u;/2U;|, does
not exceed unity, the propagation of scattered waves are
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dominated or deeply affected by the advection due to the
primary wave field when 2k,U; /w; > 1 (the lee wave regime)
or when 2kyU;/w; ~ 1 (the MTL wave regime), respec-
tively. In contrast, when the frequency change is negligible
(i.e., 2kpU; Jw; < 1), the advection is not effective.

When viewed in the frame fixed to the ground, the hori-
zontal phase velocity nearly vanishes (i.e., ¢pp+t].=0 ~ 0)
at the time of the generation in the lee wave regime. Ac-
cordingly, the scattered waves are trapped horizontally at
the generation site and could effectively grow through su-
perposition. The scattered-wave propagation has many
similarities to that of tidally generated internal waves pre-
sented in Nakamura and Awaji [2001].

c. Critical levels

As well as the advection of scattered waves, the flow
associated with the primary wave field will cause the re-
fraction of scattered waves as the waves propagate away
from the generation site. One interesting implication of
this is the presence of critical levels, where U — ¢, = £f/k
and where the wave energy converges and can cause mix-
ing and background-flow acceleration [c.f., LeBlond and
Mysak, 1978]. In the present case, ¢, is the horizontal
phase velocity of the scattered waves observed in the frame
fixed to the ground and is given as

(6.4)

at the time of the generation. The background horizontal
flow velocity, U, is associated with the large-scale waves, u;,
and thus its maximum absolute value becomes 2U;. Using
these values, a critical level can be present if

2Ui—wi/kb Z —f/k‘b. (65)
At the same time, the condition for frequency change states
from (4.1) that the primary wave field has the maximum
flow speed of 2U; 2 w;/ky. Hence, in most cases, there are
one or more critical levels within one vertical wavelength
of the large-scale waves (27/m;). In such cases, a large
portion of the scattered waves could encounter a critical
level somewhere in the course of their upward propagation.

In particular, scattered waves would encounter a crit-
ical level, when they propagate upward so fast that with
the initial group velocity, the waves would travel over the
distance 27 /m; before the temporal variation of the large-
scale wave field become significant, that is,

‘ (2m/wi)
@r/m)/cy:
Here, c,. is the initial vertical group velocity of the scat-

tered waves and can be approximated as —w;/ms when
N? > w? > f%. Using the scattered wave frequency (3.2),

> 1. (6.6)




(6.6) becomes

_@nfwi)  mi 1
(27 /mi)/cy- =~ w; Nk,

- ki ksul

- k‘s Wi
where the condition N2 > w? > f? is also used and where
ks = kp in the present parameter range. The above situa-

tion can take place in the lee-wave regime where ksu;/w; >
1, if ky is sufficiently high so that

A? > 6y,

(k:sul + wi)z

2
+ 1) > 1, (6.7)

(6.8)

is satisfied. In this situation, the scattered waves will en-
counter a critical level within one vertical incident wave-
length from the bottom, and a large portion of the waves
will be absorbed there causing both mixing and the accel-
eration of the large-scale wave flow.

This suggests the possibility that the scattered waves
of the lee-wave regime could break at a level well above the
bottom when generated by an incident wave of a low verti-
cal mode, or could break near the bottom when generated
by an incident wave of a high vertical mode.

d. Non-monochromatic incident waves

Thus far, we have focused on the case in which the in-
cident wave was monochromatic. In realistic situations,
however, incident waves are usually polychromatic and the
flow often has a steady component. A solution for non-
monochromatic incident waves can be obtained in a similar
fashion to section 2, as long as A < 1 so that the incident
waves can be linearly superposed. (A solution for the to-
pography considered above can be easily obtained but is
omitted for conciseness.)

In such a case, the Doppler shift (—kyu;) is caused by
the total large-scale flow associated with all of the incident
waves, their primary reflected waves and other flow com-
ponents. However, if a scattered-wave solution is obtained
separately for each incident-wave Fourier-component, the
Doppler shift term does not take the total flow into ac-
count, but comprises the flow associated with only one
incident-wave component and its primary reflected wave.
Because of this difference in the Doppler shift, the scat-
tered wave frequency and hence the vertical wavenumber
are not correctly obtained from a solution for each incident-
wave component.

The above argument has an important implication that
in the parameter regimes where the frequency change oc-

curs, the scattered waves associated with non-monochromatic

incident waves can no longer be represented by the super-
position of the scattered wave solutions obtained separately
for each incident-wave Fourier-component. This fact will
make it difficult to analytically estimate the energy made
available for mixing due to scattering.
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7. Summary

The scattering of internal gravity waves off a rough
topography redistributes the incoming energy flux in the

wavenumber space, which often causes enhanced cross-isopycnal

mixing near the bottom (boundary mixing). This process is
considered to contribute significantly to the globally aver-
aged mixing and could affect the global thermohaline cir-
culation [e.g., Miiller and Xu 1992]. In previous studies
on such internal wave scattering and/or reflection, it was
assumed that the frequency is conserved. However, the
present study has shown that the frequency changes during
reflection from a rough topography in a certain parameter
range, which includes the realistic range.

To demonstrate this fact analytically, we have derived
sets of appropriate and tractable governing equations for
scattered waves by a scaling argument, assuming that the
amplitude of the topography is small. The derivation pro-
cedure has two points: the use of the multiple scale method
and the definition of a scattered wave field.

The multiple scale method is useful because in most
cases, the scattered waves and the incident (and primary
reflected) waves have very different scales in time and/or
space when change in frequency occurs, as argued in sec-
tion 4. The ratios of the scales of the scattered and incident
waves, in turn, can be determined using the dispersion re-
lation and the condition for the change in the frequency
and they are summarized in Table 1.

Also, for a clear separation of the scattered waves and
incident and primary reflected waves, we define the scat-
tered wave field as the difference between the total wave
field and the wave field created by the reflection on a plane.
This definition roughly corresponds to the expansion of
the wave field with the nondimensional topographic height
scale €. The definition requires that the incident and pri-
mary reflected wave field exactly satisfy the governing equa-
tions, and thus it simplifies the treatment of incident waves
even in the nonlinear regime.

The combination of these two points allows us to sys-
tematically derive the leading order equations for various
parameter regimes: i.e., A € or ~ 1, and/or KU, ,/w; <,
~,or > 1, where A is the wave Froude number for the in-
cident waves and Kj, U;y,, and w; are the topographic
wavenumber (which is of the order of the scattered wave
wavenumber), the flow amplitude of the sum of incident
and primary reflected waves, and incident wave frequency,
respectively. Although a heuristic argument such as the
one described in section 2 is helpful for understanding the
basic idea, the lengthy but more rigorous derivation, which
provides the order of each term, shown in section 5 is useful
for the further development of the theory. For example, the
method shown here also enables us to derive higher-order
equations (though the equations are not shown for concise-
ness). In addition, the extension to a three-dimensional



case or to the case with a mean slope is straightforward
although the equations shown here are for a vertically two-
dimensional case with no mean slope.

A solution in the parameter regime ¢, ~ 1 and A < 1
(i.e., KpUjtr/w; ~ 1 and K;/K, < 1 where K; is the
horizontal wavenumber of an incident wave) is shown for
a simple case in which both the incident wave and the
topographic roughness are monochromatic. This solution
is archetypal since it includes those in other two regimes of
KyUiqr/w; > 1 and < 1 in the corresponding limits, when
A1,

The solution indicates that the intrinsic frequencies of

the scattered waves are the sum and difference of the incident-

wave frequency and the Doppler shift (or the frequency
of quasi-steady lee waves). This Doppler shift causes the
change in the frequency. Hence the assumption of fre-
quency conservation is not valid if the Doppler shift is sig-
nificant. This condition is met in the case that the horizon-
tal scale of the bottom roughness (or the length scale on
the plane of the slope) is of the order of, or much smaller
than, that of the incident-wave flow excursion, since the
horizontal wavenumber of the scattered waves is mainly de-
termined from that of the bottom roughness in this param-
eter regime. Simple estimates of this condition in section
4.a suggest that the frequency change could be a common
phenomenon in the ocean.

The underlying physics of the frequency change is the
same as that in the case of the internal wave generation by a
barotropic tidal flow over a topographic feature, which was
shown in earlier investigations by Nakamura et al. [2000]
and Nakamura and Awaji [2001], nevertheless the general-
ization to internal wave scattering has various implications,
such as those summarized below.

Firstly, the frequency change in the scattering affects
the energy redistribution in the vertical wavenumber space.
This will in turn influence the strength of the internal
wave-induced boundary mixing. In addition, the result-
ing energy-redistribution in the frequency space could af-
fect the shape of the internal wave spectra at least locally.
Secondly, when the frequency change occurs, the scattered
waves are affected significantly by the background flow as-
sociated with the incident and primary reflected waves.
This results in the advection of the scattered waves so
that the waves are arrested horizontally near the genera-
tion site and superposed to grow. Further, the background
flow causes the refraction of the scattered waves. In most
cases, critical levels appear and can cause both mixing and
flow acceleration. In particular, the scattered waves in the
lee-wave regime (i.e., KpUjtr/w; > 1) would encounter a
critical level, which can take place well above the bottom
for low vertical-mode incident waves and near the bottom
for high-mode incident waves. Lastly, the scattered waves
associated with non-monochromatic incident waves cannot
be obtained by summing the solutions for each incident-
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wave Fourier component, even at the leading order if the
frequency changes. This is because the Doppler shift de-
pends on the total flow at the bottom.

These results suggest that an estimate of the energy re-
distribution under the frequency change would be one of
the necessary steps toward estimating the boundary mixing
induced by the scattering and in understanding the main-
tenance of the spectrum shape of oceanic internal waves,
which affects both interior and boundary mixing. For this
goal, important issues still remain. For example, the effects
of large-amplitude topography, wave nonlinearity, polychro-
matic incident waves, and non-constant N are out of scope
of this study. In particular, the consideration of large-
amplitude topography is important because the ratio of
the amplitude of the scattered and incident waves is of
the order of the nondimensional topographic-height scale
€ = Hmg and hence is much less than unity for a small-
amplitude topography as the scaling argument in section
5.0.2. suggested. These effects should be included for the
application to the realistic situation and are left for future
works.
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APPENDIX A

w~Norw~f

For scaling the ratios d,, dx, and d,, in section 5.a.4, we
used the approximate dispersion relation w ~ Nk/m that
results in relation (5.9), d,, ~ dx/d,,. This approximation
of the dispersion relation becomes invalid as w approaches
N or f. Here, we consider the frequency range in which
0. is of the order of dx/dy, so that relation (5.9) is valid,
and thus the scaling in section 5 based on this relation are
appropriate.

When w ~ N, the dispersion relation (2.13) can be
usually approximated as

) N2 k,2

“ k2 +m?’

(A1)

since N > f in most cases. Hence, if k2 + m? and m? are
of the same order, w is of the order of Nk/m, and hence



(5.9) is valid. This condition is met if k% < m?, that is,

N2
2

Similarly, when w ~ f, the hydrostatic approximation
is usually valid, so that

5 N2k2
= 3

w? <
~Y

(A.2)

+ f2

(A.3)

w

Accordingly, (5.9) is valid when N2k*/m? > f2. This con-

dition can be rewritten using (A.3) as

f2

?.
This condition may be relaxed to some extent, if both

the incident frequency and the scattered frequency are of

the order of f (i.e., w ~ ws ~ f). The ratio d;/d, now
becomes

2
w? 2

(A.4)

B Wi f?
6_2 = 7(4}2 — f2 . (A5)
Thus, when inequalities
Lo, w—f 2
106w < o f? < 100, (A.6)

are satisfied, d, and 0y/d,, are of the same order. The
inequalities can be approximated as

V10

0
wl>Tfandws>

V10
3

considering the assumption ws; ~ wy, which yields 10ws >
w; and 10w; > w,. Since v/10/3 ~ 1.054, the intrinsic
frequency should be greater than f by at least 5% in order
for the scaling in section 5 to be applicable.

£ (A.7)

APPENDIX B

Nondimensional topographic height scale, ¢

The nondimensional scale of topographic height, € used
in section 5, is defined here based on the assumption of a
small-amplitude topography, which consists of two condi-
tions. (i) The height of the topography is much smaller
than the vertical scale of the waves under consideration.
(ii) The slope of the topography is smaller than the wave
ray slope.

Condition (i) is required to expand the bottom bound-

ary condition at z = 0, and is satisfied if
Hm; <1 and Hmg, <1, (B.1)

where H is the topographic height scale introduced in sec-
tion 5.a.3. These two inequalities are satisfied if

e = Hm, < 1, (B.2)
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because 0,,(= m;/ms) is much smaller than or of unity
order, as shown in Table 1.

Condition (ii) states that there is no critical or super
critical slope. This condition is met if

ka% <1 and ka% <1, (B.3)
[

s

where k; is the wavenumber of the corresponding topo-
graphic Fourier component. When wy > w; or ws ~ wy,
these inequalities are satisfied if

€ = %Hml <1, (B.4)
l

since |ms/ks|/|mi/ki| ~ wi/ws < 1 in these regimes using
the approximate dispersion relation, w ~ N|k/m|. Con-
versely, when ws < wy, (B.3) requires

k
€2 = 2 Hmg ~ Hm, < 1,

L (B.5)

where the scaling k;, ~ ks is used (see section 4.2).
These scales, €; and €5, are related as follows:

k
€1~ —ey for wg>wy,

m

O
~ — €y ~ €9

Om

for wg ~wy,

for w, K w;. (B.6)

Either €; or e> is available for the expansion of the bottom
boundary condition and/or the reflected wave field. Here,
we choose €; as the nondimensional topographic height
scale ¢, since the definition of €5 is not common to the three
parameter regimes. From (B.6) and (B.5), conditions (i)
and (ii) can be written in terms of € as

F(~6) <1 for

(=€) S 5 ws > wy,
m
<1

for ws~w; or ws <K w. (B.7)

Note that the relation between e and J is specified by the
above scaling only in the case ws; > wy.
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Fi1a. 1. Diagram of the parameter regimes of K U, ,/w;,
which is a measure of the change in scattered wave fre-
quency, as functions of the length scale of topography with
respect to that of incident wave (K;/K};) and the wave
Froude number of an incident wave (A = K;U;/w;). Here,
K, U and w are horizontal wavenumber, current amplitude,
and frequency, respectively. The subscripts s, ¢, i + r, and
b denote scattered, incident, incident and primary reflected
waves, and bottom topography, respectively. Also shown
are scales of the bottom topography (K,:l), current ex-
cursion of incident and primary reflected waves (Ui, /w;),
and incident wave wavelength (\;). Significant frequency
change occurs in the shaded regimes. Note that K ~ K
when K;/K, ~ 1 or < 1.
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TABLE 1. Scales of d,, 6, and 0,,

regime ksUl/wl >1 ksUl/wl ~1

intrinsic freq. | ws > wy Ws ~ Wy ws K wy

scales of do (€ 1)=6 0w ~ 1 (1) =46
ratios in O ~ 0A op=0~A O ~ A

terms of 0, A | 6 ~ A Om ~ 0 Om ~ 0A

when do(€1)=96 0y ~ 1 otk =9
Akl S ~ 0"l <1 r=0<1 S~ 0"k 1

(A ~ ™) Om ~ 0" < 1 dm ~0< 1 Om ~ 0" 1
when 0 (K1) =6~ | 6 ~0~0m~1|6,(K1)=0~0bp
A~1 Om ~ 1 O ~1

The ratio ¢, is defined as ¢;/¢s where subscripts [ and s
indicate large and small scales. In the regimes ws; > wy
and ws < wy, the relation between § and A is situation de-
pendent. Once the incident wave and bottom topography
are given, we may write 6" ~ A for A < 1, where n is
a natural number when § > A or the inverse of a natural
number when § < A.
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TABLE 2. Leading order equations

Ak
ws > Wy (i.e., ksUl/wl > 1), 0~A ~ Wy (i.e., k‘sUl/wl ~ 1) Ws = Wy (i e., ks Ul/wz < 1)
Di.” _ _ 05" Du~5<0> 7Y 5.(0) ap. AR .0 — _ 05,0
Dt~ oa. Dt (F) Vs " = 7o, ot (w2) 0%
De? 44, =0 IALRTAC
5, (0 i AL ~ (0) 5, (© ? 7, (0) O, (@ i Ops (0)
Di = — (5) [+ | 2= () [ +0") S = — (5) [ + 2]
Dol (KN, (0 Dy _ (kK N2) - (0 00" _ _(KZNZ) - (0
Dt~ mgwg)w() Dt~ mgwg)ws() ot —_(g S)ws()
0, @ | 9w, (O 01, @ | 85,0 _ 91, (@ | 85,0
o0x, + 0z 0 0%, 0z, 0 oz 0z =0
where where where
D _ 8 ~(0) 8 D 0 ~ (0
Dt t~s+Ul()8—$~3 DL — ~+u()—+w()8
W, = dl(o)gT at 2 =0 w, ") = uz(o) 8h at 2 =0 W,V = (V2 4 Rl otz =0
A~1
ws > wy (ie., ksUp/w > 1) ~ wy (ie., kU fw ~ 1) ws = wy (e, kUp/w < 1)
Dai,(© ~ (0)0u; (@ _ ap, () Du () f2 - (0) _ 5750
P 4,02 = 0 A" - (L) 0 = -2
D“ +A (Nl( )+ds(0):0
- 2 (0) 0 . 2 50 ~(0
D%Stw) _ (7;:2) [Bpasz + ;( )] D%St( '+ Ay () :_(7;2) [—81’5; + pg( )] no scattered waves
D | oyop” k2 N2 D (0) K2 N2\ - .
2 00 (50 | 27 ) = (52) 80 | e
) ~S(0) ) ~S(0) ) ~s(0) 5 ~S(0) _
s, t ez =0 53 7 =0
where where A4 (¢) = i) 8—; + zﬁs(o)%
D _ 9 ~(0)_o D _ 08 (038 (020
5= +ul(~)8_w_s D=1 +Ul() +wl()ﬁ
w, (@ :dl(o)é‘?T at z = u?s(o) —uz(0)8h+h‘9%’—;o) at 2 =0
The scattered wave equations to the zeroth order in both
€ and 0 (or A for the case ijU’ & 1). The equations in
the regime ks U’ ~ 1 and ws <€ w; are omitted. Note that
U =Uiy,r = 2U for a monochromatic incident wave. The
definitions of ¢, §, and A are provided in (5.24) and in
section 5.a.4.
TABLE 3. Change in vertical wavenumber due to frequency
change when A < 1
regime ksUirr/wi > 1 kUipr/wi ~ 1
intrinsic frequency Ws > w; Ws ~ W ws K w;
vertical wavenumber | m,+ < myo Mmsy < Mso | Ms_ > Mgy | Me_ > Mo

msy+ and mgo are the vertical wavenumbers of the scat-
tered waves and those calculated by assuming frequency
conservation, respectively. Subscripts s and i represent the
scattered and incident waves, respectively, and subscripts
+ and — denote the sum and difference frequency waves,

respectively.
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